Scheduling Problems and Generalized Graph Coloring
نویسنده
چکیده
We define a new type of vertex coloring which generalizes vertex coloring in graphs, hypergraphs, and simplicial complexes. To this coloring there is an associated symmetric function in noncommuting variables for which we give a deletion-contraction formula. In the case of graphs our symmetric function in noncommuting variables agrees with the chromatic symmetric function in noncommuting variables of Gebhard and Sagan. Our vertex coloring is a special case of the scheduling problems defined by Breuer and Klivans. We show how the deletion-contraction law can be applied to scheduling problems. Résumé. Nous définissons un nouveau type de coloration des sommets qui généralise les colorations dans les graphes, hypergraphes et complexes simpliciaux. Pour cette coloration, nous associons une fonction symétrique en variables non commutatives, pour laquelle nous donnons une formule de délétion contraction. Dans le cas des graphes, notre fonction symétrique en variables non commutatives est en accord avec celle de Gebhard et Sagan. Notre coloration des sommets est un cas particulier des problémes d’ordonnancement définis par Breuer et Klivans; nous démontrons comment la loi de délétion contraction peut être appliquée á ces problémes.
منابع مشابه
On Improved Time Bounds for Permutation Graph Problems
On improved time bounds for permutation graph problems p. 1 A simple test for interval graphs p. 11 Tolerance graphs and orders p. 17 Scheduling and Related Problems On scheduling problems restricted to interval orders p. 27 Scheduling with incompatible jobs p. 37 Generalized coloring for tree-like graphs p. 50 Parallel and Distributed Algorithms I Optimal (parallel) algorithms for the all-to-a...
متن کاملSolving a nurse rostering problem considering nurses preferences by graph theory approach
Nurse Rostering Problem (NRP) or the Nurse Scheduling Problem (NSP) is a complex scheduling problem that affects hospital personnel on a daily basis all over the world and is known to be NP-hard.The problem is to decide which members of a team of nurses should be on duty at any time, during a rostering period of, typically, one month.It is very important to efficiently utilize time and effort, ...
متن کاملParallel Jobs Scheduling with a Specific Due Date: Asemi-definite Relaxation-based Algorithm
This paper considers a different version of the parallel machines scheduling problem in which the parallel jobs simultaneously requirea pre-specifiedjob-dependent number of machines when being processed.This relaxation departs from one of the classic scheduling assumptions. While the analytical conditions can be easily statedfor some simple models, a graph model approach is required when confli...
متن کاملGraph Coloring Problems and Their Applications in Scheduling
Graph coloring and its generalizations are useful tools in modeling a wide variety of scheduling and assignment problems. In this paper we review several variants of graph coloring, such as precoloring extension, list coloring, multicoloring, minimum sum coloring, and discuss their applications in scheduling.
متن کاملالگوریتم ژنتیک با جهش آشوبی هوشمند و ترکیب چندنقطهای مکاشفهای برای حل مسئله رنگآمیزی گراف
Graph coloring is a way of coloring the vertices of a graph such that no two adjacent vertices have the same color. Graph coloring problem (GCP) is about finding the smallest number of colors needed to color a given graph. The smallest number of colors needed to color a graph G, is called its chromatic number. GCP is a well-known NP-hard problems and, therefore, heuristic algorithms are usually...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016